Regulation of the gluconeogenic phosphoenolpyruvate carboxykinase and the glycolytic aldolase A gene expression by O₂ in rat hepatocyte cultures. Involvement of hydrogen peroxide as mediator in the response to O_2

Thomas Kietzmann*, Stefanie Freimann, Jutta Bratke, Kurt Jungermann

Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, D-37073 Göttingen, Germany

Received 3 April 1996; revised version received 10 May 1996

Abstract Heme proteins acting as oxidases which produce H₂O₂ have been proposed to function as O₂ sensors. In order to find out whether the modulation by O2 of PCK gene activation and the stimulation of the ALD A gene by venous O2 operate via H₂O₂, the effects of different concentrations of H₂O₂ and catalase as H₂O₂ scavenger were studied in rat hepatocyte cultures under different O2 tensions. Primary hepatocytes were treated with 0.1 nM glucagon, 50 µM H₂O₂ and/or 100 µg/ml catalase each at arterial O2 or venous pO2. PCK mRNA was induced by glucagon maximally under arterial O2 and only half maximally under venous O2. ALD A mRNA was induced only by venous O2. H2O2 enhanced the induction of PCK mRNA to similar levels under both O2 tensions and the induction of ALD A mRNA under venous O2 was completely inhibited. Addition of catalase antagonized the actions of H2O2 completely. These findings support the hypothesis that an H₂O₂-generating heme protein is involved in the O2 sensing system regulating gluconeogenic and glycolytic gene expression in response to O2.

Key words: Phosphoenolpyruvate carboxykinase; Aldolase; Oxygen; Hydrogen peroxide; Metabolic zonation

1. Introduction

The knowledge of O₂ sensing systems in mammals is still rather limited. In principle an O2 sensing system should consist of the sensor proper, which binds O2, and a regulator, which interacts with DNA or RNA. In the simplest case the system would consist of a single protein in analogy to the steroid receptor with an input domain, the sensor proper, which senses the O₂ tension via a heme component, and an output domain, the regulator proper, which binds to oxygenresponsive elements in the 5' or 3' sequences of genes or to the 3' end of an mRNA and thus regulates gene expression or mRNA stability in response to O2. O2 sensor and regulator may also be separate proteins linked by a chemical reaction: the sensor could be a heme protein located in the plasma membrane with a protein kinase activity similar to the fixL/ fixJ system of the root nodule bacterium Rhizobium meliloti [1] or with NADPH-oxidase activity producing H2O2 as shown for airway chemoreceptors [2]. The regulator protein with its DNA/RNA binding activity would then be phosphorylated or oxidized, respectively, in response to O2 [3].

In hepatocytes the gene of the major rate generating gluco-

2.1 Chemicals

All chemicals were of reagent grade and purchased from commercial suppliers. Collagenase, digoxigenin-UTP, the digoxigenin nucleic acid detection kit and fetal calf serum were from Boehringer (Mannheim). Medium M199 was from Gibco BRL (Eggenstein). T3 RNA polymerase was from United States Biochemicals. Hormones were

*Corresponding author. Fax: (49) (551) 395960.

E-mail: tkietzm@gwdg.de

neogenic enzyme, cytosolic phosphoenolpyruvate carboxykinase (PCK), was induced by glucagon to higher transcription rates, mRNA amounts as well as protein levels under arterial than under venous oxygen tensions, while degradation of PCK protein was not affected by different O2 concentrations [4-6]. Conversely, the genes for the glycolytic enzymes lactate dehydrogenase A (LDH A), phosphoglycerate kinase 1 (PGK1) and aldolase A (ALD A) as well as the erythropoietin (EPO) gene were induced by hypoxia in Hep3B and HepG2 cells [7,8]. Studies with the O2 competitive ligand carbon monoxide showed that this was due to a heme protein which belongs to the b-type cytochromes [9-11]. Western blots with antibodies against the small subunit (22 kDa) and the cytosolic activation factor (47 kDa) of NADPH oxidase demonstrated the presence of an NADPH oxidase-like heme protein in HepG2 cells [11]. This was further substantiated by the finding that HepG2 cells produced H₂O₂ in response to O₂ and that the hypoxia-induced EPO production could be inhibited by H_2O_2 [12].

It was the aim of the present study to investigate the role of H₂O₂ as possible mediator in the O₂ sensing system of primary hepatocytes which causes the positive modulation by arterial O2 of the glucagon-dependent activation of the PCK gene and elicits the activation of the ALD A gene by venous O_2 . If H_2O_2 were the intracellular messenger for normoxia, it should be produced in response to O2. In addition exogenously added H2O2 should override the O2 sensor and cause the same high glucagon-dependent induction of PCK mRNA at hypoxia as at normoxia and prevent ALD A induction by hypoxia. Thus H₂O₂ should abolish O₂-dependent differences in the induction of PCK and ALD A. Therefore the production of H₂O₂ in response to the pericellular O₂ and the effects of different concentrations of added H2O2 and/or catalase as H₂O₂ scavenger on PCK and ALD A induction were studied in rat hepatocyte cultures. Hepatocytes released H2O2 in response to O2 and exogenous H2O2 acted as predicted. Thus it is proposed that an H₂O₂ generating heme protein is involved in the O2 sensing system regulating gluconeogenic and glycolytic gene expression in response to O2 as is the case with the EPO gene.

2. Materials and methods

delivered from Serva (Heidelberg). Guanidinium thiocyanate was purchased from Fluka (Neu-Ulm) and nitrocellulose BA-S 85 from Schleicher and Schüll (Dassel). Hyperfilm and [14C]leucine were supplied by Amersham Buchler (Braunschweig). All other chemicals were from Sigma (Taufkirchen).

2.2. Animals

Male Wistar rats (200–260 g, Winkelmann, Borchen) were kept on a 12 h day/night rhythm (light from 7 a.m. to 7 p.m.) with free access to water and food. Rats were anesthetized with pentobarbital (60 mg/kg body weight) prior to preparation of hepatocytes between 8 a.m. and 9 a.m.

2.3. Cell culture and induction experiments

Liver cells were isolated by collagenase perfusion. Cells $(1\times10^6$ per dish) were maintained under standard conditions in an atmosphere of 16% O_2 , 79% N_2 , and 5% CO_2 (by vol.) in medium M199 containing 1 nM insulin added as a growth factor for culture maintenance, 100 nM dexamethasone required as a permissive hormone and 4% fetal calf serum for the initial 4 h of culture. Cells were then cultured it serum-free medium from 4 to 24 h at 16% O_2 (mimicking arterial O_2 tensions). At 24 h induction of PCK was started by adding fresh M199 with 0.1 nM glucagon and when indicated 50 μ M H_2O_2 and/or 100 μ g/ml catalase each at 16% O_2 or at 8% O_2 (mimicking venous O_2 tensions). The O_2 values take into account the O_2 diffusion gradient from the media surface to the cells [4].

2.4. Measurement of extracellular release of H₂O₂

 H_2O_2 production was measured according to Ruch et al. [13] and is based on the conversion of luminol by H_2O_2 in the presence of peroxidase. After 24 h of culture the media were completely removed and the cells were washed three times with 0.9% NaCl. Culture media were then replaced by the same volume of a Krebs-Ringer buffer (120 mM NaCl, 4.8 mM KCl, 1.2 mM MgSO_4, 1.2 mM KH_2PO_4, 24.4 mM NaHCO_3). Cells were then further cultured under arterial and venous O_2 tensions. Every 2 h H_2O_2 was determined in Krebs-Ringer buffer containing 10 $\mu g/ml$ peroxidase and 10 $\mu g/ml$ luminol in a luminometer (Berthold, Germany). Krebs-Ringer buffer alone served as an independent control. The H_2O_2 concentrations used to establish standard curves were prepared by dilution of a 30% solution of H_2O_2 in Krebs-Ringer buffer.

2.5. RNA preparation and Northern analysis

Total RNA was prepared from 3×10^6 cells as described [14]. 15 μg RNA was denatured by formaldehyde and used in a typical Northern experiment. Digoxigenin (DIG)-labelled antisense ALD A and PCK RNA served as hybridization probes; they were generated by in vitro transcription from pBS-ALDA, pBS-PCK using T3 RNA polymerase and DIG-UTP. Hybridizations were carried out with 50 ng/ml transcript at 68°C for 6 h according to the manufacturer's application notes of the DIG-nucleic acid detection kit (Boehringer Mannheim). Detection of hybrids was performed as described before [6]. Blots were quantified with a videodensitometer (Biotech Fischer, Reiskirchen).

2.6. Miscellaneous

The following parameters of cell integrity were considered: LDH activity in the culture medium was measured in a standard optical test. Overall protein synthesis was estimated by incorporation of [¹⁴C]leucine into TCA precipitable protein [6]. Cell morphology was controlled by light microscopy.

3. Results

In primary rat hepatocytes the glucagon-dependent activation of the PCK gene as well as the expression of the ALD A gene were modified by O_2 . Heme proteins with H_2O_2 producing oxidase were proposed to be involved in the O_2 sensing system regulating these processes. To test for the involvement of H_2O_2 as possible mediator in the O_2 sensing of primary hepatocytes the H_2O_2 release in response to the pericellular O_2 was measured and cells were treated with H_2O_2 and/or catalase to override the sensing system.

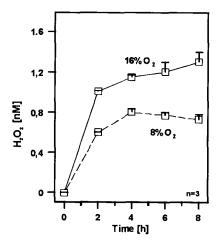


Fig. 1. O_2 -dependent release of H_2O_2 from rat hepatocyte cultures. Primary hepatocytes were cultured for 24 h at arterial O_2 . The medium was then replaced by a Krebs-Ringer buffer. The cells were further cultured under either arterial or venous O_2 tensions. Released H_2O_2 was determined at the indicated time points by a chemiluminescence assay. Values are means \pm S.E.M. of 3 independent culture experiments.

3.1. Release of H_2O_2 in response to the pericellular O_2 tension. In primary rat hepatocytes the pericellular O_2 tension influenced the production and release of H_2O_2 . With subsequent culture under extension and venezue O_1 tensions the hepatocytes.

culture under arterial and venous O_2 tensions the hepatocytes released H_2O_2 into the medium in correlation with the O_2 tension (Fig. 1). After 4 h nearly steady-state levels were reached; the external concentration was about 1.2 nM under arterial O_2 and about 0.8 nM under venous O_2 .

3.2. Optimal concentrations of H_2O_2 and catalase, and cell viability

The basal levels of PCK mRNA were not influenced and [\$^{14}\$C]leucine incorporation into total TCA-precipitable protein proceeded unaltered up to an \$H_2O_2\$ concentration of 200 \$\mu\$M\$. Also, the induction by glucagon of PCK mRNA was not negatively impaired by \$H_2O_2\$ concentrations up to 200 \$\mu\$M\$; on the contrary, induction was even stimulated by about 30% after treatment of cells with 50 \$\mu\$M\$ and 100 \$\mu\$M\$ \$H_2O_2\$ (Fig. 2). Thus, treatment with \$H_2O_2\$ up to 200 \$\mu\$M\$ had no adverse effects on cell viability. The stimulatory \$H_2O_2\$ concentration of 50 \$\mu\$M\$ was chosen for further experiments. The optimal concentration of catalase was deduced from a previous study with \$HepG2\$ cells [12]: exposure of these cells to 100 \$\mu\$g/ml catalase did not reduce cell viability.

3.3. Enhancement by H₂O₂ of the glucagon-dependent induction of PCK mRNA and inhibition of the venous O₂-dependent induction of ALD A mRNA

In 24 h rat hepatocyte cultures glucagon induced PCK mRNA to a maximum within 2 h; thereafter PCK mRNA declined again in line with previous studies [5,6,10] (not shown). Glucagon elevated PCK mRNA by about 5.5-fold (=100% induction) at arterial pO₂ and about 3.6-fold (=65% induction) at venous pO₂ (Fig. 3). The basal values of PCK mRNA were not changed during the 2 h period at the different pO₂ values (not shown). 50 μ M H₂O₂ enhanced the glucagon-dependent induction of PCK mRNA 6.5-fold (=130% induction), at arterial and about 6.0-fold (=118%

induction) at venous oxygen tensions. The small difference between the values at arterial and venous pO_2 (130% vs. 118%) was no longer significant (Fig. 3). The basal PCK mRNA levels were not influenced by treatment with H_2O_2 (Fig. 2).

In the same 24 h rat hepatocyte cultures ALD A mRNA levels were not altered significantly within 2 h under basal conditions at arterial pO₂; however they were enhanced about 1.7-fold (=100% induction) at venous pO₂. 50 μ M H₂O₂ suppressed ALD mRNA induction by hypoxia (Fig. 3).

Thus, H_2O_2 simulated arterial or even slightly hyperoxic conditions. It enhanced the glucagon-dependent induction of PCK mRNA at venous pO_2 to values higher than those obtained at arterial pO_2 in the absence of H_2O_2 and it inhibited the induction of ALD A mRNA at venous pO_2 .

3.4. Specificity of the H_2O_2 actions

The specificity of the H₂O₂ effects could best be studied at venous pO₂. It appeared possible that the added H₂O₂ could be converted to O2 and H2O by endogenous catalase and that it could therefore act by simply increasing the intracellular pO2. This possibility was tested by adding catalase to the culture media in the presence and absence of H₂O₂. Catalase would then split the added H₂O₂ to O₂ and H₂O and increase extracellular pO2 and thus also intracellular pO2. At venous pO2 catalase alone did not alter the induction of PCK mRNA by glucagon; it enhanced the induction of ALD A mRNA by hypoxia slightly and insignificantly (Table 1). Catalase added together with H₂O₂ abolished the increase in the glucagondependent induction of PCK mRNA and the suppression of the hypoxia-elicited induction of ALD mRNA by H₂O₂ (Table 1). It can therefore be concluded that H_2O_2 acted directly as such and not indirectly by increasing the extracellular and then the intracellular pO_2 .

4. Discussion

The present investigation has shown that primary rat hepatocytes produced H_2O_2 in response to the pericellular pO_2 . Furthermore it has been demonstrated that the activation of the PCK gene by glucagon was enhanced by treatment with H_2O_2 to the same levels at arterial and venous pO_2 . The normal modulation by O_2 of this induction was lost after addition of H_2O_2 which should mimic high arterial O_2 ten-

Table 1 Enhancement of the glucagon-dependent induction of PCK mRNA and inhibition of the hypoxia-elicited induction of ALD A mRNA by H₂O₂ in primary rat hepatocytes under venous pO₂

Treatment	PCK mRNA induction (%)	ALD A mRNA induction (%)
none	65 ± 5	100 ± 18
$+H_2O_2$ (50 µM)	$118 \pm 9*$	$28 \pm 15^*$
+Catalase (100 µg/ml)	63 ± 5	142 ± 20
+H ₂ O ₂ +Catalase	63 ± 9	121 ± 12

The experiments were performed as described in Fig. 3. In the control experiments without H_2O_2 and/or catalase the maximal PCK mRNA induction under arterial pO₂ and ALD A mRNA induction under venous pO₂ was set equal to 100%. Induction is the difference between induced and non-induced mRNA levels. Values measured after 2 h of induction are means \pm S.E.M. of 5 (PCK) and 3 (ALD A) individual experiments.

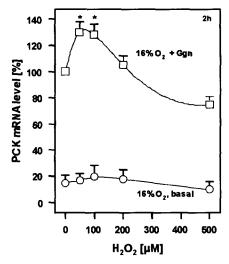


Fig. 2. Glucagon-dependent induction of PCK mRNA in primary rat hepatocytes cultured under arterial pO_2 . Increase by H_2O_2 . Hepatocytes were cultured for 24 h at arterial O_2 . After a medium change PCK was induced with 0.1 nM glucagon in the presence of the indicated concentrations of H_2O_2 for 2 h under arterial O_2 tensions. In glucagon-treated cells the induction of PCK mRNA was enhanced by H_2O_2 , whereas basal levels in untreated cells were not changed. In each control experiment with 0.1 nM glucagon but without H_2O_2 the maximally induced PCK mRNA level was set equal to 100%. Values are means \pm S.E.M. of 3 independent culture experiments. Student's *t*-test for paired values: *, significant difference to values without H_2O_2 , P < 0.05.

sions. Conversely H_2O_2 inhibited the low O_2 -dependent induction of the ALD A gene. Since H_2O_2 could be produced by a heme containing oxidase these findings substantiate the proposal that H_2O_2 could function as mediator in the O_2 sensing system modulating the glucagon-dependent induction of the PCK gene as well as the low O_2 -dependent induction of the ALD A gene.

4.1. H_2O_2 as an intracellular mediator

4.1.1. H₂O₂ in insulin action on adipocytes. H₂O₂ in the range of 500 μM mimicked the effect of insulin on glucose transport and oxidation, incorporation of glucose into lipid, inhibition of hormone-stimulated lipolysis and stimulation of pyruvate dehydrogenase in isolated adipocytes [15]. In a concentration of 2–3 mM H₂O₂ was shown to activate tyrosine phosphorylation of the insulin receptor and the insulin receptor kinase in intact adipocytes, H-35, and CHO cells [16,17]. In line with these findings insulin stimulated peroxide production through the activation of membrane-bound NADPH oxidase in adipocytes [18].

4.1.2. H_2O_2 in cytokine action in leucocytes. Cytokines such as tumor necrosis factor (TNF) and interleukin 1 (IL-1) induced H_2O_2 production in leukocytes (burst reaction) during defense and inflammatory reactions via activation of NADPH oxidase. H_2O_2 could then in turn activate the eukaryotic transcription factor B (NFB) to alter gene expression in the immune response. This was shown by treatment of Jurkat T cells with TNF and H_2O_2 . 100 μ M H_2O_2 mimicked the effect of TNF in the activation of NFB [19,20].

4.1.3. H_2O_2 in O_2 actions on vascular smooth muscle and hepatoma cells. In pulmonary arteries H_2O_2 induced vasodi-

^{*}P < 0.05, Student's t-test for paired values (control vs. treatment).

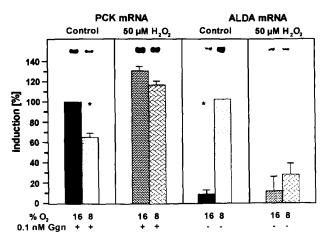


Fig. 3. Modulation by O_2 of the glucagon-dependent increase in PCK mRNA and of the basal ALD A mRNA levels in rat hepatocyte cultures. Simulation of arterial O_2 by H_2O_2 . Primary hepatocytes were cultured for 24 h at arterial O_2 . After a medium change PCK mRNA was induced with 0.1 nM glucagon. Cells were then further cultured either without or with 50 μ M H_2O_2 under arterial and venous O_2 tensions. PCK mRNA and ALD A mRNA were determined after 2 h. In each control experiment without H_2O_2 the maximal PCK mRNA induction under arterial pO_2 and ALD A mRNA induction under venous pO_2 was set equal to 100%. Induction is the difference between induced and non-induced mRNA levels. Values are means \pm S.E.M. of 5 (PCK) and 3 (ALD A) independent experiments. Student's *t*-test for paired values: *, significant difference between arterial and venous pO_2 , P < 0.05.

latation whereas under hypoxia, when H_2O_2 production was low, vasoconstriction was observed [21]. The recent finding that the hypoxia-induced EPO production in HepG2 cells is inhibited by H_2O_2 [12] supports the idea that H_2O_2 could be a mediator of O_2 signals.

4.1.4. H_2O_2 in O_2 actions on hepatocytes. In this study concentrations up to 100 µM enhanced the glucagon-dependent induction of PCK mRNA, whereas inhibitory effects were observed with concentrations higher than 100 µM (Fig. 2). These were not unspecific effects of H₂O₂, since catalase completely inhibited the action of H₂O₂ within the induction period (Table 1). In liver cells the normal intracellular concentration of H₂O₂ was found to be in the sub-micromolar range, whereas other tissues such as the eye lens reached up to 25 μM [22]. The extracellular H_2O_2 concentrations of 50 μM , which mimicked arterial O2 in this study, did not exert severe oxidative stress, since the oxidative stress responsive gene of heme oxygenase 1 was activated in the same hepatocyte cultures starting with 100 µM H₂O₂ [23]. The results of this study suggest also that the O₂-sensing system in HepG2 cells, which controls EPO production, may be similar to that in hepatocytes which regulates the modulation by O2 of the glucagoninduced PCK gene expression and the low O2-dependent expression of the ALD A gene.

Thus, H_2O_2 may play a role in the mediation of insulin action, in the regulation of gene expression during defense reactions and as shown here in the transduction of the O_2 signal into the cell.

4.2. Involvement of heme proteins with H_2O_2 producing oxidase functions in O_2 sensing

4.2.1. Cyanide-insensitive NADPH oxidase. Measurement

of absorbance maxima typical for a b-type cytochrome, the presence of several components of the NADPH oxidase complex and the detection of H_2O_2 by rhodamine fluorescence suggested that HepG2 cells posses a cyanide-insensitive electron-transfer chain similar to the NADPH oxidase in neutrophils [11] and that they produce H_2O_2 depending on the O_2 tensions. In pulmonary neuroepithelial bodies histochemically stained with an antibody recognizing the p91 polypeptide of the heme-linked NADPH oxidase, H_2O_2 production during O_2 sensing was reported [2].

4.2.2. Various H_2O_2 -generating heme proteins. It was shown that a H_2O_2 -generating heme protein might act as possible O_2 sensor in carotid body preparations [24]. Spectral analyses and the fluorescence microscopic demonstration of H_2O_2 production revealed an H_2O_2 -generating heme protein as a possible O_2 sensor [24].

The hypothesis that an NADPH-like oxidase is part of the O_2 sensor is in line with results from this and earlier studies on the regulation of EPO and PCK induction, which had shown the participation of a heme protein [6,9,10]: the hypoxia-induced EPO production was modulated by inducers and inhibitors of a b-type cytochrome, the P-450 system [25], and it was sensitive to O_2 but not cyanide [11] or dinitrophenol [10], which excludes respiratory chain type-b cytochromes. Moreover, the hypoxia-induced increases in EPO mRNA [12] and ALD A mRNA were inhibited and the glucagon-dependent induction of PCK mRNA was increased by H_2O_2 (Fig. 3).

4.3. Possible mechanism of H_2O_2 action

4.3.1. Short-term regulation by H_2O_2 without gene activation. The blockade of H_2O_2 production in neuroepithelial bodies mimicked the reduction in the K^+ current which is normally seen under hypoxic conditions [2]. In pulmonary arteries H_2O_2 induced relaxation via a catalase-sensitive activation of a guanylate cyclase [21].

4.3.2. Long-term regulation by H_2O_2 via gene expression

 $\rm H_2O_2$ could influence the activation state of transcription factors as shown for NFB, the oxidative stress-responsive transcription factor [20], or activator protein 1 (AP-1) [26], p53 [27], redox factor 1 (Ref-1) [28], hypoxia inducible factor 1 (HIF1) [29] and recently also C/EBP-β [30]. In a recent study it was demonstrated that $\rm H_2O_2$ could diminish HIF1 binding activity to the 3'-EPO gene enhancer [29].

4.4. Involvement of phosphorylation/dephosphorylation in O₂ sensing

The H_2O_2 effects do not preclude the possibility that phosphorylations/dephosphorylations are not involved in O_2 sensing. It was shown that hypoxia-induced EPO mRNA as well as HIF1 DNA binding to the 3'-EPO gene enhancer was reduced after treatment of Hep3B cells with the protein kinase inhibitor 2-aminopurine [31]. Thus protein phosphorylations and redox mechanisms may play different roles in O_2 sensing and the exact mechanism by which H_2O_2 enhances PCK induction and inhibits the low O_2 -dependent ALD A and EPO gene activation remains to be further elucidated.

Acknowledgements: This study was supported by the Deutsche Forschungsgemeinschaft SFB 402. We wish to thank T. Saheki for the kind gift of aldolase A cDNA.

References

- [1] Gilles-Gonzalez, M.A., Ditta, G.S. and Helinski, D.R. (1991) Nature 350, 170–172.
- [2] Youngson, C., Nurse, C., Yeger, H. and Cutz, E. (1993) Nature 365, 153–155.
- [3] Jungermann, K. and Kietzmann, T. (1996) Annu. Rev. Nutr. 16, 179-203.
- [4] Nauck, M., Wölfle, D., Katz, N. and Jungermann, K. (1981) Eur. J. Biochem. 119, 657-661.
- [5] Hellkamp, J., Christ, B., Bastian, H. and Jungermann K. (1991) Eur. J. Biochem. 198, 635–639.
- [6] Kietzmann, T., Schmidt, H., Probst, I. and Jungermann, K. (1992) FEBS Lett. 311, 251-255.
- [7] Semenza, G.L., Roth, P.H., Fang, H.-M. and Wang, G.L. (1994)J. Biol. Chem. 269, 23757–23763.
- [8] Firth, J.D., Ebert, B.L., Pugh, C.W. and Ratcliffe, P.J. (1994) Proc. Natl. Acad. Sci. USA 91, 6496–6500.
- [9] Goldberg, M.A., Dunning, S.P. and Bunn, H.F. (1988) Science 242, 1412–1415.
- [10] Kietzmann, T., Schmidt, H., Unthan-Fechner, K., Probst, I. and Jungermann, K. (1993) Biochem. Biophys. Res. Commun. 195, 792-798
- [11] Görlach, A., Holtermann, G., Jelkmann, W., Hancock, T.J., Jones, A.S., Jones, G.O.T. and Acker, H. (1993) Biochem. J. 290, 771–776.
- [12] Fandrey, J., Frede, S. and Jelkmann, W. (1994) Biochem. J. 303, 507-510.
- [13] Ruch, W., Cooper, P.H. and Baggiolini, P. (1983) J. Immunol. Methods 63, 347–357.
- [14] Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- [15] Cheng, K. and Larner, J. (1985) Annu. Rev. Physiol. 47, 405-474

- [16] Hayes, G.R. and Lockwood, D.H. (1987) Proc. Natl. Acad. Sci. USA 84, 8115–8119.
- [17] Heffetz, D., Rutter, W.J. and Zick, Y. (1992) Biochem. J. 288, 631-635.
- [18] Krieger-Brauer, H.I. and Kather, H. (1995) Biochem. J. 307, 549-556
- [19] Schreck, R., Rieber, P. and Baeuerle, P.A. (1991) EMBO J. 10, 2247–2258.
- [20] Meyer, M., Schreck, R. and Baeuerle, P.A. (1993) EMBO J. 12, 2005–2015.
- [21] Omar, H.A., Mohazzab, H.K.M., Mortelli, M.P. and Wolin, M.S. (1993) Am. J. Physiol. 264, L141–L145.
- [22] Halliwell, B. and Gutteridge, J.M.C. (1989) Free Radicals in Biology and Medicine, 2nd edn. Clarendon Press, Oxford.
- [23] Kietzmann, T., Immenschuh, S., Katz, N., Jungermann, K. and Muller-Eberhard, U. (1995) Biochem. Biophys. Res. Commun. 213, 397–403.
- [24] Cross, A.R., Henderson, L., Jones, O.T., Delpiano, M.A., Hentschel, J. and Acker, H. (1990) Biochem. J. 272, 743-747.
- [25] Fandrey, J., Seydel, F.P., Siegers, C.P. and Jelkmann, W. (1990) Life Sci. 47, 127-134.
- [26] Webster, K.A., Disher, D.J. and Bishopric, N.H. (1994) Circ. Res. 74, 679-686.
- [27] Graeber, T.G., Peterson, J.F., Tsai, M., Monica, K., Fornacae, A.J. and Giaccia, A.J. (1994) Mol. Cell. Biol. 14, 6264–6277.
- [28] Yao, K.S., Xantoudakis, S., Curran, T. and O'Dwyer, P.J. (1994) Mol. Cell. Biol. 14, 5997–6003.
- [29] Wang, G.L., Jiang, B.H. and Semenza, G. (1995) Biochem. Biophys. Res. Comm. 212, 550-556.
- [30] Yan, S.F., Tritto, I., Pinsky, D., Liao, H., Huang, J., Fuller, G., Brett, J., May, L. and Stern, D. (1995) J. Biol. Chem. 270, 11463–11471.
- [31] Wang, G.L. and Semenza, G.L. (1993) Proc. Natl. Acad. Sci. USA 90, 4304–4308.